Investigation of FGFR2-IIIC Signaling via FGF-2 Ligand for Advancing GCT Stromal Cell Differentiation

نویسندگان

  • Shalini Singh
  • Mohini Singh
  • Isabella W. Y. Mak
  • Robert Turcotte
  • Michelle Ghert
چکیده

Giant cell tumor of bone (GCT) is an aggressive bone tumor consisting of multinucleated osteoclast-like giant cells and proliferating osteoblast-like stromal cells. The signaling mechanism involved in GCT stromal cell osteoblastic differentiation is not fully understood. Previous work in our lab reported that GCT stromal cells express high levels of TWIST1, a master transcription factor in skeletal development, which in turn down-regulates Runx2 expression and prevents terminal osteoblastic differentiation in these cells. The purpose of this study was to determine the upstream regulation of TWIST1 in GCT cells. Using GCT stromal cells obtained from patient specimens, we demonstrated that fibroblast growth factor receptor (FGFR)-2 signaling plays an essential role in bone development and promotes differentiation of immature osteoblastic cells. Fibroblast growth factor (FGF)-2 stimulates FGFR-2 expression, resulting in decreased TWIST1 expression and increased Runx2, alkaline phosphastase (ALP) and osteopontin (OPN) expression. Inhibition of FGFR-2 through siRNA decreased the expression of ALP, Runx2 and OPN in GCT stromal cells. Our study also confirmed that FGF-2 ligand activates downstream ERK1/2 signaling and pharmacological inhibition of the ERK1/2 signaling pathway suppresses FGF-2 stimulated osteogenic differentiation in these cells. Our results indicate a significant role of FGFR-2 signaling in osteoblastic differentiation in GCT stromal cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The roles of FGF signaling in germ cell migration in the mouse.

Fibroblast growth factor (FGF) signaling is thought to play a role in germ cell behavior. FGF2 has been reported to be a mitogen for primordial germ cells in vitro, whilst combinations of FGF2, steel factor and LIF cause cultured germ cells to transform into permanent lines of pluripotent cells resembling ES cells. However, the actual function of FGF signaling on the migrating germ cells in viv...

متن کامل

Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development.

We disrupted the fibroblast growth factor (FGF) receptor 2 (FGFR2) gene by introducing a neo cassette into the IIIc ligand binding exon and by deleting a genomic DNA fragment encoding its transmembrane domain and part of its kinase I domain. A recessive embryonic lethal mutation was obtained. Preimplantation development was normal until the blastocyst stage. Homozygous mutant embryos died a few...

متن کامل

FGFR2 isoforms support epithelial-stromal interactions in thyroid cancer progression.

Alternate splicing yields two distinct isoforms of the fibroblast growth factor (FGF) receptor FGFR2-IIIb and FGFR2-IIIc varying their extracellular structure in human thyroid cancer, in which FGFR expression is commonly dysregulated. In this study, we characterized the function of these variants in modulating thyroid cancer behavior. Enforced expression of either FGFR2-IIIb or FGFR2-IIIc in th...

متن کامل

Fibroblast Growth Factor Receptor 2: Expression, Roles, and Potential As a Novel Molecular Target for Colorectal Cancer

The fibroblast growth factor receptor (FGFR) family consists of four members, named FGFR1, 2, 3, and 4. All 4 FGFRs and their ligands, fibroblast growth factors (FGFs), are expressed in colorectal cancer (CRC). Recent studies have shown that FGFR2 plays important roles in cancer progression; therefore, it is of great interest as a novel target for cancers. Expression of FGFR2 regulates migratio...

متن کامل

Distinct fibroblast growth factor (FGF)/FGF receptor signaling pairs initiate diverse cellular responses in the oligodendrocyte lineage.

Fibroblast growth factors (FGFs) have been implicated in numerous cellular processes, including proliferation, migration, differentiation, and survival. Whereas FGF-2, the prototypic ligand in a family of 22 members, activates all four tyrosine kinase FGF receptors (FGFR1-FGFR4), other members demonstrate a higher degree of selectivity. Oligodendrocytes (OLs), the myelin-producing cells of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012